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Abstract
A dynamical model for quantum channels is introduced which allows one to
pass continuously from the memoryless case to the case in which memory
effects are present. The quantum and classical communication rates of the
model are defined and explicit expression is provided in some limiting case. In
this context, we introduce noise attenuation strategies where part of the signals
are sacrificed to modify the channel environment. The case of qubit channel
with phase damping noise is analysed in detail.

PACS numbers: 03.67.Hk, 03.65.Ud, 89.70.+c

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In memoryless quantum channels, successive signals (channel uses) are affected by
independent, uniform sources of noise [1–5]. On the other hand, memory channels are
characterized by the presence of correlated source of noise where each channel use is directly
or indirectly affected by the previous ones. Preliminary results in the study of such systems
have been obtained in [6] where it was pointed out that entangled codes can be useful in
achieving optimal channel performances. Subsequently, some of these results have been
generalized to the continuous variable case in [7, 8], while a systematic analysis of the
problem has been proposed in [9, 10]. In this paper, we present a ‘dynamical’ model for
studying memory effects in quantum communication where the noise correlations are derived
from the interactions between the transmitted signals and the channel environment. By
varying the time intervals at which signals are produced by the sender of the message, the
model simulates different communication scenarios. Memoryless configurations for instance
are recovered as a limiting case in which the signals are transmitted at a frequency much
lower than the inverse of the characteristic time of the channel environment relaxation. In this
context, we also introduce noise attenuation protocols where the sender alternates sequences
of carrying-messages signals with sequences of signals which are employed to modify the
environment response but which do not carry any messages to the receiver. Since timescales
are fundamental in our model, we characterize its efficiency by introducing the transmission

0305-4470/05/5010989+17$30.00 © 2005 IOP Publishing Ltd Printed in the UK 10989

http://dx.doi.org/10.1088/0305-4470/38/50/008
http://stacks.iop.org/JPhysA/38/10989


10990 V Giovannetti

rates of the communication line. These are dimensional quantities (of dimension equal to an
inverse time) which measure the maximal number of qubits or bits of information that can be
transferred reliably (i.e., with unit fidelity) through the channel per unit of transmitting time.
Transmission rates are peculiar of our model as previous works [6–10] were concerned in
characterizing memory channels in terms of information capacities, i.e. the maximum number
of qubits (or bits) that can be reliably transferred through the channel per channel uses. These
figures of merit (i.e., rates and capacities) are in general distinct, but are proportional to each
other when the sender of the message encodes her/his messages in regular sequence of signals
(see section 4.1).

In section 2, we introduce the channel model by focusing on the physical assumptions
which underline its definition. In section 3, we discuss the memory effects present in the
system and we introduce the noise attenuation protocols. In sections 4 and 5, we define the
transmission rates of the channel and compute their values in some extremal case. Finally in
section 6, an example of a dephasing qubit channel with memory is discussed.

2. The model

Consider a communication line where messages are encoded into some internal degree of
freedom (e.g., polarization, spin etc) of a collection of identical physical objects C1, C2, . . .

which propagate through the medium E that separates the sender (say Alice) from the receiver
(Bob). Cj are the information carriers of the system: they are locally produced by Alice and
organized in a time-ordered sequence s = {τ1, τ2, . . .} with τj > 0 being the time interval
between the instants tj+1 and tj at which Cj+1 and Cj enter E, respectively. We will assume the
effective transit time T tr it takes for the carriers for reaching Bob to be constant and shorter
than the intervals τj at which they are injected into the medium (fast propagation condition).
The first condition guarantees that the time-ordering of s is preserved in the propagation (i.e.,
Bob will receive the (j + 1)th carrier only after a time τj from the arrival of the j th carrier).
The second condition instead guarantees that E interacts only with one carrier at a time.
Therefore, if R is the density matrix of the carriers at Alice location, after a time Ttr Bob will
receive the state

R′ = TrE{W(R ⊗ ρ0)W
†}, (1)

where ρ0 is the initial state of E, and where

W = · · · VjUj · · · V2U2V1U1, (2)

is the unitary operator which describes the coupling between the internal degree of freedom
of the carriers and E. In equation (2), the terms

Uj ≡ T exp

{
− i

h̄

∫ tj +Ttr

tj

dt
[
HCj E(t) + HE

]}
, (3)

describe the interaction between Cj and E (here, HCj E(t) is the effective time-dependent
Hamiltonian that couples Cj and E, while HE is the free Hamiltonian of the medium).
Working in a strong coupling regime, we will neglect the contribution of HE in equation (3)
and we will assume Uj to be uniform with respect to label j . On the other hand, the terms Vj

of equation (2) describe the free evolution of E in the time interval between the instant tj + Ttr

when Cj leaves the environment and the instant tj+1 when Cj+1 enters it, i.e.

Vj ≡ exp
{
− i

h̄
HE(τj − Ttr )

}
� exp

{
− i

h̄
HEτj

}
. (4)
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Figure 1. Schematic of the communication scenario. Alice encodes her messages in the internal
degree of freedom of the carriers C1, C2, . . . , which propagates in a time-ordered sequence toward
Bob. The carriers interact one at a time with the local environment, LE, while LE undergoes a
dissipative evolution through its interaction with the reservoir, R.
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Figure 2. Circuit representation of equation (7). The local environment (LE) interacts through
the unitary couplings Uj (represented by the small red circles in the figure) with one carrier at a
time. Between two consecutive interactions with the carriers instead LE undergoes the dissipative
evolution described by the transformations Eτj

(open circles).

In the following, we identify two distinct components of the medium E: a finite-
dimensional local environment (LE) component which is directly coupled with the carriers
through Uj , and a huge reservoir (R) component which is coupled with LE but not with the
carriers (see figure 1). The free evolution (4) is supposed to induce a dissipative dynamics
which transforms any initial states of LE into a stationary configuration σ0, with τE being
the characteristic time of the process. This is equivalent [11] to introducing a one-parameter
family F ≡ {Eτ }τ�0 of completely positive trace (CPT) preserving which, given σ the initial
state of LE at some time t0, represents its evolution at time t0 +τ with the density matrix Eτ (σ ).
In this formalism E0 coincides with identity map on HLE . On the other hand, the stationary
state σ0 of LE is defined by the property

Eτ (σ0) = σ0 for all τ � 0, (5)

while the characteristic time τE by the property

Eτ�τE
(�) = σ0 Tr �, (6)

for all bounded operator � of HLE . An example of F satisfying the above conditions will be
presented in section 6.

Under the above approximations, equation (1) provides a bouncing ball description
of the carrier–environment interactions where the carriers–balls move toward the LE–wall
according to the time-ordered sequence s = {τ1, τ2, . . .} chosen by the ‘pitcher’ Alice and
‘hit’ instantaneously the local environment (LE) one at a time (see figure 1). The resulting
transformation is a time-ordered product of interactions Uj and relaxation processes Eτj

(see
figure 2). Assuming LE to be initially in the stationary state σ0, this gives
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R′ = TrLE

{ · · · ◦ Eτj
◦ Uj ◦ · · · ◦ Eτ2 ◦ U2 ◦ Eτ1 ◦ U1(R ⊗ σ0)

}
, (7)

where the partial trace is performed on HLE,Uj (· · ·) stands for the unitary mapping Uj(· · ·)U †
j

on HCj
⊗ HLE and ‘◦’ indicates the composition of super-operators. It is important to note

that in our model each sequence s = {τ1, τ2, . . .} is characterized by a distinct input–output
relation (7).

3. Memory effects

Here we give an overview of the memory effects which are accounted for by the model
introduced in section 2.

Because of the time-ordering of equation (7) the output state of a carrier might depend on
the input state of the carriers which precedes it in s but it is always independent from the input
state of the carriers which follows it in the sequence. As a matter of fact, equation (7) closely
resembles the memory channels analysed by Kretschmann and Werner [10]. To make this
more explicit, we rewrite this equation in terms of the discrete family of CPT maps

{
�(n)

s

}
n
,

where

�(n)
s (R) ≡ TrLE

{
Un ◦ Eτn−1 ◦ Un−1 ◦ · · · ◦ Eτ1 ◦ U1(R ⊗ σ0)

}
, (8)

is the output state (7) corresponding to the density matrix R of ⊗n
j=1HCj

associated with the
first n carriers of the sequence s (here HCj

is the Hilbert space associated with the internal
degree of freedom of the j th carrier). Therefore, the model of section 1 originates proper
memory effects analogous to those of [6, 8–10] but avoids the feed-forward correlations of
[7]. For instance, Markovian correlated noise can be recovered by properly choosing the
transformations Eτj

(see appendix A).

3.1. Memoryless configuration

Assume Alice is producing a sequence s with intervals τj greater than or equal to the
characteristic relaxation time τE of the dissipation process F—see figure 3(a). In this case,
after each interaction, the local environment (LE) has enough time to relax into the stationary
configuration σ0 before a new carrier begins interacting with it. Under this hypothesis
equations (6) and (8) yield

�(n)
s = N⊗n, (9)

where N is the CPT map which transforms the density matrices ρ of a single carrier into

N (ρ) = TrLE{U(ρ ⊗ σ0)}. (10)

Equation (9) describes a memoryless configuration where the noise acts on the Cj

independently.

3.2. Generalized memoryless configuration

A generalization of (9) is obtained when the carriers are organized in identical independent
groups of m elements each. Here it is convenient to express the elements of s as τg,�, where
g = 1, 2, . . . is the group index, while � ∈ {1, . . . , m} labels the carriers within a given group.
In this notation, the time interval

Tg =
m−1∑
�=1

τg,�, (11)
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Figure 3. Some relevant configurations. (a) Memoryless configuration (9). The carriers
(represented by the green circles) are separated by time intervals τj which are greater than the
dissipation time τE of the local environment. (b) Generalized memoryless configuration (12).
Here the carriers are divided in groups labelled by the index g. The groups are separated by time
intervals �Tg which are greater than the dissipation time τE . (c) Perfect memory channel (14).
Here the distance between two consecutive carriers is negligible with respect to τE inhibiting the
relaxation of LE. (d) Example of a noise attenuation protocol. Alice sends uniform sequences
of signals composed by n carriers (the B carriers of the protocol represented by yellow circles in
the picture) which have been prepared in the same input state ρ0 and which are separated by time
intervals τ . These carriers do not convey any message to Bob and are employed only to ‘program’
the environment response. The information is instead encoded into the (n + 1)th carrier (the A
carriers of the protocol represented by the green circles). The sequence repeats after a time interval
τE to allow LE to return to the stationary configuration.

gives the ‘length’ of the gth group while �Tg = τg,m is the interval which separates the last
element of the gth group from the first element of the (g + 1)th group. We do not assume
any restrictions on the time intervals {τg,�}�=1,...,m−1 which separates carriers belonging to the
same group but we require carriers of distinct subgroups to be separated by time intervals
larger than τE , i.e. �Tg � τE—see figure 3(b). In this case from equation (8) follows that the
transformation of the carriers of the first G groups can be expressed as

�(n)
s = ⊗G

g=1M(g)
s , (12)

where n = mG and

M(g)
s (ρ) ≡ TrLE

{
Ug,m ◦ Eτg,m−1 ◦ · · · ◦ Eτg,1 ◦ Ug,1(ρ ⊗ σ0)

}
, (13)

is the CPT map associated with the m carriers Cg,1, . . . , Cg,m of the gth group. By comparison
with equation (9), equation (12) describes a memoryless channel where the groups are the
effective information carriers of the model. In particular, if the sets {τg,�}�=1,...,m are uniform

with respect to the group label g, one has M(g)
s = M(g′)

s for all g and g′ and the transformation
(12) has once again the standard tensor structure M⊗G

s .
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3.3. Perfect memory channel

Consider the case where τj � τE for all j . In this limit, the local environment relaxation
process is inhibited by the frequent interactions with the carriers. Consequently, Eτj

are
replaced by the identity transformation on HLE and equation (8) yields

�(n)
s (R) = TrLE{Un ◦ · · · ◦ U2 ◦ U1(R ⊗ σ0)}. (14)

This expression describes a perfect memory channel [9, 10] where the information transferred
from the carriers to the finite-dimensional local environment (LE) is not dissipated into the
reservoir R of figure 1. These maps are asymptotically equivalent [10] to noiseless channel
where each carriers can transfer log2 D qubits of quantum information reliably (here D is the
dimension of the Hilbert space HC of a single carrier).

3.4. Noise attenuation protocols

Here we present a communication strategy which explicitly exploits the fact that in our model
the environment is effected by the signalling process. In these protocols only a subset A of
the transmitted carriers is used to encode messages to Bob. The remaining carriers (subset B)
are instead employed for perturbing LE in such a way that Cj on which the messages are
encoded have a better chance to reach Bob without being corrupted. In other words, the B
carriers are used by the sender as control parameters to program the environment response
to the A carriers. A simple implementation of a noise attenuation scheme is shown in
figure 3(d). Here the B carriers are composed of uniform strings of n states ρ0 (represented by
the yellow circles) separated by equal time intervals τ . The information is instead encoded into
a single carrier (green circles) and the whole structure repeats after a relaxation time τE—this
last assumption is not fundamental but allows us to treat the input–output relations of the A
carriers as a memoryless channel of the form (9). In this configuration, the transformation of
the A carriers which comes from solving equation (7) can be computed as follows. First we
determine the modified state σn of LE which arises from the interactions with the B carriers.
This is accomplished by solving the set of coupled equations analogous to those of [12],{

σ ′
j = TrC{U(ρ0 ⊗ σj )},

σj+1 = Eτ (σ
′
j ),

(15)

where the trace is performed over the carrier degree of freedom, U is the usual carrier-LE
coupling super-operator and j = 0, 1, . . . , n − 1. The density matrix σn which results from
(15) is then used to determine the output state of the A carriers according to the equation

N (ρ) ≡ TrLE{U(ρ ⊗ σn)}. (16)

The transformation (16) is in general different from equation (10) and depends explicitly on
the parameters n, τ and ρ0 that are controlled by Alice. The basic idea of a noise attenuation
scheme is to appropriately select such parameters in order to get a transformed mapping N
which is less noisy than the original mapping N . An example of this effect will be presented
in section 6.

4. Transmission rate of a sequence

Timescales play a fundamental role in the model presented in section 2. Therefore, a proper
way to characterize it is by introducing its quantum and classical transmission rates. In
simple terms these quantities measure, respectively, the maximum number of qubits and bits
per second that Alice can encode into the carriers sequence s without compromising the
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readability of the transmitted messages. The formal definition of the rate of the sequence s is
constructed as follows.

First of all we introduce the discrete value function ns(T ) which, given the sequence s,
counts the number of carriers that fit1 in the time interval [0, T [. Furthermore, for any ε > 0
and T > 0, we define qs(ε, T ) to be the dimension—in qubits units—of the largest Hilbert
sub-space of H(T ) ≡ ⊗ns(T )

j=1 HCj
which allows for a fidelity of the transmitted state greater

than (1 − ε). This is

qs(ε, T ) = max
d

{
log2 d : ∃Hcode dimHcode = d, ∃A,D

∀|	〉 ∈ Hcode F
(
	,D ◦ �(T )

s ◦ A
)

> 1 − ε
}
, (18)

where Hcode are Hilbert sub-spaces of H(T ),A and D are encoding and decoding CPT maps
on H(T ) applied, respectively, by Alice and Bob to the carriers, and

F
(
	,D ◦ �(T )

s ◦ A
) ≡ 〈	|D ◦ �(T )

s ◦ A(|	〉〈	|)|	〉, (19)

is the fidelity between the input state |	〉 ∈ Hcode and the decoded output state D ◦ �(T )
s ◦

A(|	〉〈	|) (for ease of notation �(T )
s indicates the map �(ns(T ))

s of equation (8) that acts on
ns(T ) carriers of s which lie on [0, T [). The quantum transmission rate rq(s) of s is thus given
by the ratio qs(ε, T )/T in the limits ε → 0, T → ∞ , i.e.2

rq(s) = lim
ε→0

lim sup
T →∞

qs(ε, T )

T
. (20)

Analogously, we define the classical transmission rate rc(s) of s by substituting the function
qs(ε, T ) with the largest number of classical distinguishable messages cs(ε, T ) that can be
transmitted to Bob with fidelity greater than (1 − ε), i.e.

rc(s) = lim
ε→0

lim sup
T →∞

cs(ε, T )

T
, (21)

where as in equation (18), one has

cs(ε, T ) = max
d

{
log2 d : ∃Hcode dimHcode = d, ∃A,D

∀k ∈ {1, . . . , d} F
(
	k,D ◦ �(T )

s ◦ A
)

> 1 − ε
}
, (22)

with |	1〉, |	2〉, . . . , |	d〉 being an orthonormal basis of Hcode.

4.1. Upper and lower bounds

A simple upper bound for the quantum rate rq(s) of s can be derived from equation (20) as
follows3:

rq(s) = lim
ε→0

lim sup
T →∞

ns(T )

T

qs(ε, T )

ns(T )

1 The integer ns(T ) is uniquely defined by the inequalities

ns (T )−1∑
j=1

τj � T <

ns(T )∑
j=1

τj . (17)

2 The presence of lim supT →∞ f (T ) = limT →∞ supt�T f (t) in place of a regular limit over T in equation (20)
stems from the fact that one is considering the maximum over all possible rate achievable. Analogous definitions
apply in the case of channel capacities of memoryless channels (see for instance [5, 10, 13, 14]).
3 The inequalities (23) and (26) do not apply, respectively, in the pathological situation where (τ ′

s , Qs) = (0, 0) and
(τ ′′

s , Qs) = (0, 0). These cases are hence excluded from the analysis.
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�
[

lim
ε→0

lim sup
T →∞

qs(ε, T )

ns(T )

]
lim sup
T ′→∞

ns(T
′)

T ′

= Qs/τ
′
s , (23)

where τ ′
s is the minimum average first-neighbours distance among the carriers of s defined by

1/τ ′
s = lim sup

T ′→∞

ns(T
′)

T ′ = lim
T ′→∞

sup
t�T ′

ns(t)

t
. (24)

On the other hand,

Qs = lim
ε→0

lim sup
T →∞

qs(ε, T )

ns(T )
= lim

ε→0
lim sup

n→∞
qs(ε, n)

n
(25)

defines the quantum capacity [2, 10, 13, 14] associated with the maps
{
�(n)

s

}
n

of equation (8)
(in this expression qs(ε, n) is given by (18) with ns(T ) replaced by n).

A lower bound for rq(s) is instead obtained as follows (see footnote 3):

rq(s) = lim
ε→0

lim sup
T →∞

ns(T )

T

qs(ε, T )

ns(T )

�
[

lim
ε→0

lim sup
T →∞

qs(ε, T )

ns(T )

]
lim inf
T ′→∞

ns(T
′)

T ′

= Qs/τ
′′
s , (26)

where τ ′′
s � τ ′

s is the maximum first-neighbours average distance among the carriers of s

defined by

1/τ ′′
s = lim inf

T ′→∞
ns(T

′)
T ′ = lim

T ′→∞
inf
t�T ′

ns(t)

t
. (27)

If the sequences s are such that limT →∞ ns(T )/T = 1/τs exists, one has τ ′
s = τ ′′

s = τs

with τs being the average first-neighbours distance among the carriers. These are the regular
sequences of the model: for them equations (23) and (26) coincide and the transmission rate
is proportional to the quantum capacity of the channel, i.e.

rq(s) = Qs/τs. (28)

The same analysis can be repeated also for the classical rate rc(s) of equation (21). In
particular, in this case, equations (23), (26) and (28) still apply by replacing Qs with the
classical capacity Cs of the maps

{
�(n)

s

}
n

defined by

Cs = lim
ε→0

lim sup
n→∞

cs(ε, n)

n
. (29)

4.2. Some solvable configurations

The maximizations implicit in equations (25) and (29) are in general difficult to solve.
However, following the analysis of [10, 13] one can bound the capacities Qs and Cs by means
of the coherent information [15] and of the Holevo information [16] of �(n)

s , respectively. In
particular, we have

Qs � lim sup
N→∞

max
R

J
(
�(N)

s , R
)

N
, (30)

where the maximization is performed over all density matrices R of N carriers and

J
(
�(N)

s , R
) ≡ S

(
�(N)

s (R)
) − S

((
�(N)

s ⊗ IA

)
(	R)

)
, (31)
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is the coherent information [15] of �(N)
s (R). In the above expression, S(R) = −Tr[R log2 R]

is the von Neumann entropy, 	R is a generic purification of R constructed by adding an
ancillary Hilbert space HA and IA is the identical map on HA. Analogously, one has

Cs � lim sup
N→∞

max
P

χ
(
�(N)

s ,P
)

N
, (32)

where the maximization is performed over all ensemble P = {pk;Rk}k of N carriers and where

χ
(
�(N)

s ,P
) ≡ S

(
�(N)

s

(∑
k

pkRk

))
−

∑
k

pkS
(
�(N)

s (Rk)
)
, (33)

is the Holevo information [16] associated with �(N)
s . Kretschmann and Werner have identified

a class of maps
{
�(n)

s

}
n

(the forgetful channels [10]) for which the right-hand side term of
(30) and (32) indeed provide the exact value for Qs and Cs . Here, we will focus only on the
limiting cases discussed in section 3 for which an expression for Qs and Cs can be derived
without the elegant arguments of [10].

(a) The simplest configuration is when the sequence s is such that τj � τE for all j . When
this happens the maps

{
�(n)

s

}
n

describe a perfect memory channel (14) which allows
optimal transfer, ensuring Qs = Cs = log2 D. Therefore, according to (28) using regular
sequences s with τj � τE , Alice and Bob can achieve transmission rates equal to

rq(s) = rc(s) = log2 D

τs

. (34)

(b) For memoryless configurations (9), Qs and Cs coincide, respectively, with the quantum
Q(N ) and classical C(N ) capacity of the memoryless map N of equation (10). On one
hand, one has [4],

Q(N ) = lim
N→∞

max
R

J (N⊗N,R)

N
, (35)

where, as in equation (30), the maximization is performed over all density matrices R of
N carriers and where J (N⊗N,R) is the coherent information (31) of N⊗N . On the other
hand, one has [3]

C(N ) = lim
N→∞

max
P

χ(N⊗N,P)

N
, (36)

where the maximization is performed over all ensemble P = {pk;Rk}k of N carriers and
where χ(N⊗N,P) is the Holevo information (33) associated with N⊗N . Therefore for
regular sequences s with τj � τE , we get

rq(s) = Q(N )/τs, rc(s) = C(N )/τs. (37)

(c) The generalized memoryless configurations (12) can be treated in the same way by
replacing the quantities τ ′

s , τ
′′
s of equations (24) and (27) with the corresponding average

first-neighbouring group distances and the map N with the m carriers memoryless map
Ms of equation (13). In particular, for a generalized memoryless sequences s having
constant group lengths Tg = Ts and constant group separations �Tg = �Ts for all g one
easily verifies the following identities:

rq(s) = Q(Ms)/(Ts + �Ts), (38)

rc(s) = C(Ms)/(Ts + �Ts). (39)
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(d) Finally, consider the noise attenuation protocols of section 3.4. For the sake of simplicity,
we will focus on the specific example of figure 3 where the results for memoryless
configuration applies. In this case, the rate is given by

rq(s) = Q(N )/(nτ + τE), rc(s) = C(N )/(nτ + τE), (40)

with N being the map (16) and with nτ + τE being the time intervals which separates
two consecutive A carriers.

5. Transmission rate for multiple choice of the sequence

In this section, we analyse the optimal quantum and classical communication rates Rq,c

achievable in our model when Alice is not restricted to a single given sequence s, but instead
she has some freedom in selecting the sequence she will use for the signalling.

For the sake of simplicity, we will assume the set S of the allowed sequences to be fully
characterized by a single parameter τmin which bounds the minimum value for the intervals τj

of a sequence s of the set. That is S = S(τmin) will be the set of all sequences s which satisfy
τj � τmin for all j . The need of constraining the minimum value of τj is fundamental if we
want our model to have a non-trivial structure (see for instance section 4.2 and equation (47)).
From a more practical point of view, the introduction of τmin follows from the physical and
technological difficulties in producing sequence of ordered signals that might arise in realistic
communication scenarios (for instance, too close packed carriers tend to overlap during their
propagation, compromising the time-ordering of the sequence).

A natural candidate for Rq,c is the maximum of the rates rq,c(s) computed over the
sequence s of S, i.e.

R(1)
q,c(τmin) = max

s∈S
rq,c(s). (41)

A detailed analysis of R(1)
q,c is presented in appendix B where it is shown how equation (41)

simplifies in the case in which S contains only regular sequences for which equation (28)
applies. We will see in a moment that for τmin � τE and τmin � τE , the function R(1)

q,c(τmin)

provides indeed the correct values of the achievable rates. For generic τmin, however, we claim
that the function R(1)

q,c(τmin) does not necessarily tell the whole story about Rq,c. In contrast,
we propose to compute Rq,c as follows:

Rq(τmin) = lim
ε→0

lim sup
T →∞

max
s∈S

qs(ε, T )

T
, (42)

Rc(τmin) = lim
ε→0

lim sup
T →∞

max
s∈S

cs(ε, T )

T
, (43)

with qs(ε, T ) and cs(ε, T ) given in equations (18) and (22). Equations (42) and (43) define
proper rates of the communication line of section 1 in the sense that, given δ > 0 and ε is
arbitrarily small there is an allowed sequence s ∈ S which, in the limit of infinite T permits
Alice to transfer to Bob at least (Rq − δ)T qubits with fidelity >(1 − ε).

Since equation (41) is obtained from equations (42) and (43) by inverting the order of
the maximization over s with the limits in ε and T it follows immediately that R(1)

q,c(τmin) is a
lower bound for Rq,c(τmin) of S, i.e.

Rq,c(τmin) � R(1)
q,c(τmin). (44)

An interesting problem is to understand whether or not the inequality in equation (44) can
always be replaced with an identity. Alternatively, one may ask under which conditions on the
model parameters (i.e., Uj ,F) the transmission rate of S can be computed as the maximum
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of the rates achievable within a specific choice of s. In the next section, we provide a partial
answer to these questions by showing that for τmin � τE and τmin � τE the functions Rq,c(τmin)

and R(1)
q,c(τmin) coincide.

5.1. Bounds and asymptotic behaviour

Even without solving the maximizations of (41), (42) and (43), one expects the resulting
expressions R(1)

q,c, Rq,c will depend upon the interplay between the relaxation time τE of LE
and the characteristic time τmin of S.

A trivial but useful upper bound for Rq,c follows by observing that the maximum number
ns(T ) of carriers that can fit in [0, T [ cannot be greater than T/τmin and that qs(ε, T ), cs(ε, T )

cannot be greater than the log2 of the dimension of H(T ), i.e.

qs(ε, T ), cs(ε, T ) � ns(T ) log2 D, (45)

with D being the dimension of the Hilbert space of a single carrier. Replacing the above
relations in equations (20) and (21) gives

Rq,c(τmin) � log2 D

τmin
, (46)

for all τmin. From section 4.2, it follows that this bound is achievable at least if S is such that
τmin � τE . In this case, in fact, the sequence s0 with τj = τmin for all j allows for carriers
that reliably transfer log2 D qubits of information each. Therefore from (41) and (44), we get

Rq,c(τmin) = R(1)
q,c(τmin)

∣∣
τmin�τE

� log2 D

τmin
, (47)

which shows that the rates diverge for τmin → 0. An explicit expression can also be determined
for τmin greater than τE . In fact, according to section 3.1, in this case all the allowed sequences
s yield the same memoryless mapping N⊗n(T ). Thus, the maximization with respect to s

becomes a simple optimization with respect to the average time intervals τs and one gets,

Rq(τmin) = R(1)
q (τmin)

∣∣
τmin�τE

= Q(N )/τmin, (48)

Rc(τmin) = R(1)
c (τmin)

∣∣
τmin�τE

= C(N )/τmin, (49)

with Q(N ) and C(N ) the capacities of equations (35) and (36), respectively.
For intermediate value of τmin, a lower bound for R(1)

q,c, and thus for Rq,c, can be obtained
for instance by focusing on the generalized memoryless configuration (see equation (B.1)) or
by considering the noise attenuation strategies. In this last case, it is simpler to consider only
the configurations described in figure 3 and maximizing the rates (40) with respect to the free
parameters τ � τmin and n � 1, e.g.

R(1)
q (τmin) � sup

τ�τmin
n�1

Q(N )

nτ + τE

, R(1)
c (τmin) � sup

τ�τmin
n�1

C(N )

nτ + τE

. (50)

6. An example with qubits

In this section, we analyse an example of dynamical model for memory channels where both
the information carriers Cj and the local environment LE are qubits. In this context, we will
make a comparison between the noise attenuation protocol of section 3.4 and the memoryless
configuration.
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We will assume the carrier–LE interaction Uj of equation (3) to be to a control unitary
such that when the carrier is in |0〉Cj

nothing happens to LE, while when Cj is in |1〉Cj
the

environment undergoes to the transformation

�(λ) ≡
( √

λ
√

1 − λ√
1 − λ −√

λ

)
, (51)

with λ ∈ [0, 1] being a parameter which measures the ‘intensity’ of the coupling (with low
coupling corresponding to λ ∼ 1 and high coupling corresponding to λ ∼ 0). Moreover,
we will assume the relaxation process F = {Eτ }τ acting on LE to be described by amplitude
damping maps [1] which takes the state |1〉LE to |0〉LE with probability 1 − η(τ), where
η(τ) ∈ [0, 1] is a non-increasing function of τ with characteristic time τE , i.e.

Eτ (|0〉LE〈0|) = |0〉LE〈0|
Eτ (|1〉LE〈1|) = η(τ)|1〉LE〈1| + (1 − η(τ))|0〉LE〈0|
Eτ (|0〉LE〈1|) =

√
η(τ)|0〉LE〈1|.

(52)

In this example, the stationary state σ0 of LE is hence |0〉LE . The parameterization of the
memory effect is given by η(τ), with η = 0 corresponding to the memoryless case (fast
environment relaxation) and η = 1 corresponding to perfect memory case (no environment
relaxation). In order to have a well-defined threshold between memoryless and memory
configuration, in the following we will assume:

η(τ) =
{

1 − τ/τE for τ < τE

0 for τ � τE.
(53)

Under the above conditions, it is possible to show that both the map N of the memoryless
case and the map N (16) of the noise attenuation protocol correspond to a phase damping
channel Pg where the coherence terms of the input qubit ρ are degraded by a positive factor
g � 1, i.e. [1]

Pg(|κ〉C〈κ|) = |κ〉C〈κ| for κ = 0, 1

Pg(|0〉C〈1|) = g|0〉C〈1|. (54)

In particular, equation (10) gives N = Pg0 with g0 = √
λ. On the other hand, equation (16)

gives N = Pg , where g is a complicated expression (C.10) of λ and of the parameters ρ0, n and
τ (see appendix C for details). By appropriately selecting the values of the above quantities,
one can make N less noisy than N by having g > g0. To see if this corresponds to an
increase in the transmission rates rq,c(s), we can use the results of section 4.2. In the case of
the phase damping channels Pg , the capacities Q(Pg) and C(Pg) of equations (35) and (36)
can be explicitly computed. For instance, since here the noise does not affect the populations
associated with the computational basis, the classical capacity of the phase damping channel
(54) is optimal for all values of g, i.e. C(Pg) = 1. Hence from equations (37) and (40), we get

rc(s0) = 1/τE � 1/(nτ + τE) = rc, (55)

where s0 is the memoryless sequence with uniform interval τj = τE and rc is the classical
rate of the noise attenuation protocol of figure 3. Equation (55) shows that, in the specific
example considered here, the noise attenuation protocol does not improve the classical rate of
the communication line with respect to the memoryless case. On the other hand, the quantum
capacity of a phase damping channel (54) is equal to [17]

Q(Pg) = 1 − H2(1/2 + g/2), (56)
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Figure 4. Plot of the ratio � of equation (57) as a function of the dimensionaless parameter τ/τE ,
for different values of n and for different values of the environment-carriers coupling constant
λ. In the strong coupling regime λ ∼ 0, the attenuation noise protocol provides a significative
improvement of the transmission rate. For instance, for λ = 0.01, r reaches the maximum value
of ∼1.3 for n = 1 and τ ∼ τE/2.

where H2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function. In this case,
higher values of g corresponds to higher Q(Pg) and the rate rq of the noise attenuation protocol
can be higher than the rate rq(s0) of the memoryless case. To see this we studied the ratio

� = rq

rq(s0)
= τE

nτ + τE

1 − H2(1/2 + g/2)

1 − H2(1/2 + g0/2)
, (57)

as a function of the variable τ/τE and for different values of n and λ. (Here g has been
optimized with respect to the no-carrying signal ρ0). The results have been plotted in figure 4
which shows that in the strong coupling limit λ ∼ 0 one can have an appreciable increase of
� for τ ∼ τE/2 and with n of the order of 5.

7. Conclusion

We have introduced a communication model where memory effects arise from the interaction
between the information carriers with the channel environment. Different memory effects can
be simulated by varying the time intervals at which the carriers are produced by the sender of
the message. The information rates of the model have been defined and computed in some
extremal cases.
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Appendix A

In this appendix, we show how a Markovian correlated noise [6, 9, 10] can be derived from
the mapping (8) by properly choosing the transformation Eτj

.
Consider the case in which for sufficiently big τ the map Eτ describes a decoherent

process of LE where, given {|�〉LE} an orthonormal basis of HLE , one has

Eτ (|�〉LE〈�′|) = δ�,�′ |ψ�(τ)〉LE〈ψ�(τ)|, (A.1)

with the vectors {|ψ�(τ)〉LE}� being not necessarily orthogonal, and δ�,�′ being the Kronecker
delta. The condition (5) can then be satisfied by identifying σ0 with one element of the
selected basis (say |�0〉LE), and imposing |ψ�(τ � τE)〉LE = |�0〉LE for all �. In this case the
mapping (8) can be expressed in terms of the operators

A�1 ≡ LE〈�1|U1|�0〉LE (A.2)

A�j+1,�j
≡ LE〈�j+1|Uj+1|ψ�j

(τj )〉LE, (A.3)

which act, respectively, on the Hilbert space HC1 and HCj+1 for j = 1, . . . , n − 1. They allow
us to define the probability distribution

p
(1)
�1

≡ TrC1

{
A

†
�1

A�1

}
(A.4)

and the conditional probabilities

p
(j+1)

�j+1|�j
≡ TrCj+1

{
A

†
�j+1,�j

A�j+1,�j

}
, (A.5)

which satisfies the normalization conditions
∑

�j+1
p

(j+1)

�j+1|�j
= 1 and

∑
�j

p
(j+1)

�j+1|�j
< 1. Using

these quantities, equation (8) can be finally expressed in compact Markovian form,

�(n)
s (R) =

∑
�1,...,�n

p
(1)
�1

p
(2)
�2|�1

· · · p(n)
�n|�n−1

M�n,�n−1 · · · M�2,�1M�1RM
†
�1

M
†
�2,�1

· · ·M†
�n−1,�n

(A.6)

with M�1 ≡ A�1

/√
p

(1)
�1

and

M�j+1,�j
≡ A�j+1,�j

/√
p

(j+1)

�j+1|�j
.

Appendix B

In this section, we analyse R(1)
q,c showing that, if the set S contains only regular sequences, then

the maximization of equation (41) can be solved by focusing on the generalized memoryless
configurations.

Consider the subset S0 of the sequence s ∈ S which corresponds to the uniform
generalized memoryless configurations of section 3.2 characterized by constant group distance
�Ts = max{τmin, τE}. Since S0 is a proper subset of S, we have

R(1)
q (τmin) � max

s∈S0

rq(s)

= max
s∈S0

Q(Ms)

Ts + max{τmin, τE} , (B.1)

where we used equation (38) to express rq(s). Now, given s ∈ S from equations (23) and (30)
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one gets

rq(s) � (1/τ ′
s) lim sup

N→∞
max

R

{
J
(
�(N)

s , R
)/

N
}

� (1/τ ′
s) lim sup

N→∞

{
sup
k�1

max
R′

J
([

�(N)
s

]⊗k
, R′)

kN

}

= (1/τ ′
s) lim sup

N→∞

{
lim

k→∞
max

R′

J
([

�(N)
s

]⊗k
, R′)

kN

}

= (1/τ ′
s) lim sup

N→∞

{
Q

(
�(N)

s

)
N

}
, (B.2)

where in the second and in the third line the maximization is performed over the density matrix
R′ of k × N carriers,

[
�(N)

s

]⊗k
are k copies of the map �(N)

s and Q
(
�(N)

s

)
is the memoryless

quantum capacity (35) of the map �(N)
s . The second inequality is trivial: it follows from the fact

that maxR J
(
�(N)

s , R
)/

N can be obtained from maxR′ J
([

�(N)
s

]⊗k
, R′)/(kN) for k = 1. The

identity on the third line instead is a consequence of the fact that maxR′ J
([

�(N)
s

]⊗k
, R′)/(kN)

achieves its maximum for k → ∞. We can further simplify the above expression by
introducing the time interval Ts(N − 1) = ∑N−1

j=1 τj associated with the first (N − 1) carriers
of the sequence s and noting that

lim sup
N→∞

Ts(N − 1)

N
= τ ′′

s , (B.3)

with τ ′′
s defined as in equation (27). Using this result from equation (B.2), we get

rq(s) � lim sup
N→∞

Ts(N − 1) + max{τmin, τE}
Nτ ′

s

lim sup
N→∞

Q
(
�(N)

s

)
Ts(N − 1) + max{τmin, τE}

� τ ′′
s

τ ′
s

sup
N

Q
(
�(N)

s

)
Ts(N − 1) + max{τmin, τE}

� τ ′′
s

τ ′
s

sup
s∈S0

Q(Ms)

Ts + max{τmin, τE} . (B.4)

The ratio τ ′′
s /τ ′

s is always greater than or equal to 1. However, if the set S includes only
sequences which are regular, than for all s we have τ ′

s = τ ′′
s . In this case, the bounds of

equations (B.1) and (B.4) coincide yielding

R(1)
q (τmin) = max

s∈S0

Q(Ms)

Ts + max{τmin, τE} . (B.5)

The same derivation applies also for the classical rate R(1)
c . In this case, one can show that if

S contains only regular sequence then,

R(1)
c (τmin) = max

s∈S0

C(Ms)

Ts + max{τmin, τE} . (B.6)

B.1. Asymptotic limit

It is interesting to note that the above expressions give the correct asymptotic values of
section 5.1. For instance, for τmin � τE , we have Ms = N⊗m, where m is the number of
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carriers contained in each group of the sequence and N is the memoryless map (9). Given
s ∈ S0, this yields

Q(Ms)

Ts + max{τmin, τE} = mQ(N )

Ts + τmin
� Q(N )

τmin
, (B.7)

where we used the additivity property Q(N⊗m) = mQ(N ) of memoryless channels and the
fact that group length (11) is always greater than or equal to (m−1)τmin. Equation (48) finally
follows by noting that the rate Q(N )/τmin is achieved by the sequence of S0 with τg,� = τmin

for all g and �.
The limit (47) instead follows by noting that the rate log2 D/τmin can be obtained from the

set S0 by using τg,� = τmin for all � = 1, . . . , m − 1 in the limit of large group, i.e. m → ∞.
In this case, in fact, Ms is a tensor product of perfect memory channels and Ts = (m− 1)τmin,
so that

Q(Ms)

Ts + max{τmin, τE} = m log2 D

(m − 1)τmin + τE

→ log2 D

τmin
. (B.8)

Appendix C

To characterize the modified map of N , we first solve the system (15) by using the following
parameterization for the density matrices element of σj in the canonical basis {|0〉LE, |1〉LE},

σj ≡
(

1 − zj xj + iyj

xj − iyj zj

)
, (C.1)

with zj ∈ [0, 1] and xj , yj real for all j = 0, 1, . . . , n. The resulting recursive equation can
be simplified by introducing the column vectors

�vj ≡ (η−1/4zj , xj )
T , �w ≡ (1 − p)(η3/4(1 − λ), η1/4

√
λ(1 − λ))T

and the 2 × 2 Hermitian matrix

A ≡ (1 − p)

[
η
(

p

1−p
− 1 + 2λ

) −2η3/4
√

λ(1 − λ)

−2η3/4
√

λ(1 − λ)
√

η
(

p

1−p
+ 1 − 2λ

)
]

,

where η stands for η(τ) and p is the population associated with the |0〉C component of the
no-carrying message state ρ0. In this notation, equation (15) gives the following uncoupled
equations:

yj+1 = √
η(2p − 1)yj (C.2)

�vj+1 = A · �vj + �w, (C.3)

which can be solved analytically. In particular, imposing the initial condition σ0 = |0〉LE〈0|
(i.e., x0 = y0 = z0 = 0) the first one gives yj = 0 for all j . The solution of (C.3) instead
can be obtained in terms of the eigenvalues λ± of A and their corresponding eigenvectors
(α±, β±)T . Explicitly, the eigenvalues of A are

λ± =
√

η

2
[(1 +

√
η)p + (1 − p)(1 − √

η)(1 − 2λ) ± �], (C.4)

with

� = {4√
η(1 − 2p) + [(1 +

√
η)p + (1 − p)(1 − √

η)(1 − 2λ)]2}1/2. (C.5)
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The corresponding eigenvectors (α±, β±) have instead the following components:

α± = η1/4(1 − p)
√

λ(1 − λ)/N±,

β± = [(
√

η − 1)p − (1 − p)(1 − 2λ)(1 +
√

η) ∓ �]/N±,
(C.6)

with the normalization coefficient

N± = {16(1 − p)2√ηλ(1 − λ) + [(
√

η − 1)p − (1 − p)(1 − 2λ)(1 +
√

λ) ∓ �]2}1/2. (C.7)

In particular, for |λ±| < 1 one has4

�vj = Aj · �v0 +
j−1∑
k=0

Ak · �w = 11 − Aj

11 − A
· �w (C.8)

and thus

zj = η3/4(1 − p)[η1/4(1 − λ)u(j) +
√

λ(1 − λ)t(j)]

xj = η1/2(1 − p)[η1/4(1 − λ)t(j) +
√

λ(1 − λ)v(j)],

where u(j) = ξ
(j)
+ α2

+ + ξ
(j)
− α2

−, v(j) = ξ
(j)
+ β2

+ + ξ
(j)
− β2

− and t (j) = ξ
(j)
+ α+β+ + ξ

(j)
− α−β− with

ξ
(j)
± = 1 − (λ±)j

1 − λ±
. (C.9)

Setting j = n and replacing the above expressions into (C.1), we obtain the modified state of
LE, σn, after n successive interactions with ρ0. Using the definition (16), one verifies that N
is a phase damping channel (54) characterized by a damping factor

g =
√

λ − 2(
√

λzn − √
1 − λxn). (C.10)
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